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Abstract 

This paper and the following one [paper XIV; Weigel 
& Veysseyre (1994). Acta Cryst. A50, 444--450] 
are the fourth and fifth of a series devoted to incom- 
mensurate structures; they deal with the tri-incom- 
mensurate crystal phases. Owing to physical 
considerations for the vectors of modulation, the 
tri-incommensurate point-symmetry operations are 
defined and listed as well as the tri-incommensurate 
point-symmetry groups and the tri-incommensurate 
crystal families of Euclidean space E 6. The first of 
these two papers mainly consists of the study of the 
tri-incommensurate point-symmetry operations; 
therefore, some properties of the point-symmetry 
operations of Euclidean space E 6 a re  given. The 
second paper is devoted to the mono-, di- and tri- 
incommensurate point-symmetry groups and crystal 
families. Finally, a comparison between mono-, di- 
and tri-incommensurate structures is established. 

Introduction 

A crystal lattice is considered incommensurate if the 
vectors describing the main and satellite reflections 
may be labelled with (3 + d) Miller indices as follows: 

d 
H = ha* + kb* + lc* + Z mgq*, (1) 

i=l 

where h, k, l and mi are integers and 

q* = o~ia* +/3ib* + Tic*. (2) 

One, at least, of the three entries ai, fli and % is 
irrrational for each value of the index i. 

If d =  1, the structure is mono-incommensurate 
(MI) (de Wolff, 1974; Weigel & Bertaut, 1986; 
Vey.sseyre & Weigel, 1989; Phan, Veysseyre, Weigel 
& Gr6bille, 1989). 

If d =  2, the structure is di-incommensurate (DI) 
(Janner, Janssen & de Wolff, 1983; Phan, 1989; 
Phan, Veysseyre & Weigel, 1991). 

If d = 3, the structure is tri-incommensurate (TI). 
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Incommensurate structures have been studied by 
different scientists, mainly Janner et al. (1983), from 
the crystal structure in physical space. As in our 
previous paper (Phan et al., 1991), we have adopted 
a different approach, which consists of describing a 
reciprocal lattice in a (3 + d)-dimensional space as 
follows: 

bl = a*, b2 = b*, b3 -- e*,  

b3+; = q* + d;. (3) 

The d vectors d; are unit orthogonal vectors, ortho- 
gonal to the physical space generated by the vectors 
(a*, b*, c*). Moreover, the projection of the recipro- 
cal superlattice is the experimentally observed dif- 
fraction pattern, i.e. the vector H. As a consequence, 
the basis vectors of the direct lattice are 

d d 

al = a - X aidi, a 2 = b -  Zflidi ,  
i=l i=1 

d (4) 
a 3 : c - -  Z yidi ,  a 3 + i = d i .  

i=l 

They define the dual basis of the basis (bl, bz, b3, 
b3+/) .  

In this paper and in the following one, we study 
the tri-incommensurate (TI) structures. Then, as a 
conclusion, we compare the mono-, di- and tri- 
incommensurate structures. We begin with the study 
of the tri-incommensurate point-symmetry opera- 
tions (TIPSOs); then, we study the tri- 
incommensurate point-symmetry groups (TIPSGs); 
finally, we study the tri-incommensurate crystal 
families of space E 6. 

I. Different types of tri-incommensurate point- 
symmetry operation 

A tri-incommensurate point symmetry operation is a 
point-symmetry operation (PSO) that leaves a tri- 
incommensurate phase invariant, this phase being a 
crystal in space E 6. 
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T a b l e  1. I r r a t i o n a l  e n t r i e s  o f  t he  v e c t o r s  q*,  q*  a n d  q~  

The first column gives the number of the different kinds. For instance, the first kind is the one where all the nine entries a~, fl, and y~ are 
irrational, whereas the last kind (number 2Y) is the one with three irrational entries only. Columns 2, 3 and 4 list the irrational entries of 
each vector q*; zero means that the value of the corresponding entry is either zero or rational. Column 5 gives the basis in which the 
PSO is described. The matrices are listed in the last column, e~ means + 1 or - l; I is the identity matrix of space E 6. The different 
matrices A, B, ..., where ME and M3 are the matrices of crystallographic PSOs of space E ~ and space E ~, respectively, are 

A = 

E =  

'e, 0 0 0 0 0' 

0 et 0 0 0 0 

0 0 e~ 0 0 0 

0 0 0 el 0 0 

0 0 0 0 e~ 0 

0 0 0 0 0 e2 

"gl 0 0 0 0 0" 

0 e, 0 0 0 0 

0 0 el 0 0 0 

0 0 0 e2 0 0 

0 0 0 0 e2 0 

0 0 0 0 0 g3 

, B =  

, F =  

"e~ 0 0 0 0 0 

0 e~ 0 0 0 0 

0 0 e, 0 0 0 

0 0 0 e, 0 0 

0 0 0 0 ez 0 

0 0 0 0 0 e2 

"e 0 0 0 0 0 

0 e 0 0 0 0 

0 0 e 0 0 0 

0 0 0 e 0 0 

0 0 0 0 
M: 

0 0 0 0 

, C =  

, G =  

0 0 0 0" 
Mz 

0 0 0 0 

0 0 0 0 
M2 

0 0 0 0 

0 0 0 0 e 0 

0 0 0 0 0 e 

"e~ 0 0 0 0 0' 

0 e~ 0 0 0 0 

0 0 e~ 0 0 0 

0 0 0 e: 0 0 

0 0 0 0 6 3 0 

0 0 0 0 0 e3 

, D =  

, H =  
0 

0 

0 

"e, 0 0 0 0 0" 

0 e~ 0 0 0 0 

0 0 e, 0 0 0 

0 0 0 e2 0 0 

0 0 0 0 e2 0 

0 0 0 0 

0 

M3 0 

0 

0 0 

0 0 

0 0 

0 e~ 

0 O' 

0 0 

0 0 

M3 

No.  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13" 
130 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 . 
23 b 
2Y 

ql(a]fl,  y)) 

a,/3~ y, 
a, fl~ y, 

a~ f l ,  y, 
a, f l ,  y~ 

a~ B, 0 
a , /~  0 
a~/~ 0 
a~/~ 0 
a, B, 0 
a, B, 0 
k k O  

a B~O 

a fl[y~ 
a B~O 
a B,O 
a B,O 
a B,O 
a O 0  
a O 0  

0 
kO0  

q2(a'2 f12 Y2) q3(~'3 f13 Y3) Bases Mat r i ces  

a2 f12 Y2 a3 f13 )'3 a~ a2 a3 a4 as a6 e l  
a:  f12 Y2 or3 f13 0 al a2 a~ a4 as a6 el  
012 J~2 0 a3 •3 0 a, a2 a3 a4 a5 a6 eI 
or2 0 Y2 a3 f13 0 al a2 a3 a4 a5 a6 e l  

or2 f12 72 ot 3 0 0 a) a2 a3 a4 as a6 e l  
a2 f12 0 a3 0 0 a) a2 (13 a4 as a6 eI  
0 f12 Y2 a3 0 0 at a2 a3 a4 as (16 e l  
Or2 ~2 0 ~3 ~:~ 0 al a2 a4 as a6 a~ A 
or2 f12 0 a3 0 Y3 (1] a2 a3 a4 as a6 e l  
a2 0 Y2 0 f l j  T3 aa a2 a3 a4 a~ a6 e l  
Or2 f12 0 Ot 3 0 0 al a2 a4 as a6 a3 A 
ce2 0 Y2 a3 0 0 al a2 a3 a4 as a6 e.l 
ce2 f12 0 0 0 Y3 aj a2 aa as a3 a6 B 

k k O O 0  Y3 a~ a2 a4 as a3 a6 C 

a2 0 Y2 0 0 Y3 al a2 a3 a4 as a6 e l  
a2 0 0 0 f13 0 al a2 a3 a4 a5 a6 el  
Ot 2 0 0 Ot 3 0 0 a) a 2 a3 a4 as a6 el  
0£ 2 0 0 ¢7g 3 0 0 a) a 2 a4 a5 a6 a3 A 
ce2 0 0 0 f13 0 aj a2 a4 as a6 a3 A 
0 0 Y2 0 0 Y3 al a2 a4 a3 as (16 D 
0 132 0 0 0 Y3 al a2 a4 as a3 a6 B 
a2 0 0 0 f13 0 al a4 as a2 a6 a3 E 
a2 0 0 a3 0 0 a~ a4 as a6 a2 a3 F 
0 f12 0 0 0 Y3 al a4 a2 as a3 (16 G 
0 k 0 0 0 Y3 a~ a2 a4 as (13 (16 C 
0 k 0 0 0 k a~ a2 a3 a4 as a6 H 

T h e  d i f f e r e n t  t y p e s  o f  T I P S O  r e s u l t  f r o m  a s t u d y  
o f  all p o s s i b l e  d i s t r i b u t i o n s  o f  i r r a t i o n a l  e n t r i e s  
o c c u r r i n g  in (2), i.e. in  t h e  t h r e e  v e c t o r s  q*:  

q*  = a t a *  + f l ; b*  + y / c*  (i = 1, 2, 3). 

T h e  v e c t o r s  d e s c r i b i n g  t h e  c r y s t a l  cell  o f  a T I  s t ruc -  
t u r e ,  in  s p a c e  E 6, a r e  

al = a - a l d l  -- a2d2 - a3d3, a4 = d],  

a2 = b - / 3 1 d l  --/32dE - f13d3, a5 = d2, 

a 3 = c - y l d l - y 2 d 2 - y 3 d 3 ,  a 6 = d 3 .  

T h e  s t u d y  o f  all p o s s i b l e  d i s t r i b u t i o n s  o f  i r r a t i o n a l  
e n t r i e s  a ; ,  fl~ a n d  % r e s u l t s  in t h e  23 k i n d s  l i s t ed  in  
T a b l e  1 or ,  in  fac t ,  26 k i n d s ,  i f  we  t a k e  t h e  p a r t i c u l a r  
cases  i n t o  a c c o u n t .  I n  th i s  t ab l e ,  we  h a v e  o n l y  wr i t -  
t en  t h e  i r r a t i o n a l  e n t r i e s  o f  e a c h  v e c t o r  q* ;  z e r o  
m e a n s  t h a t  t h e  v a l u e  o f  t h e  c o r r e s p o n d i n g  e n t r y  is 
e i t h e r  z e r o  o r  r a t i o n a l .  

W e  e x p l a i n  t h e  m e t h o d  t h r o u g h  t h r e e  e x a m p l e s .  
(1) K i n d  8 c o r r e s p o n d s  to  

q * = a ; a * + / 3 ~ b *  ( i = 1 , 2 , 3 ) ,  

i.e. six i r r a t i o n a l  e n t r i e s  (71 = ' ) / 2 - "  ')/3 ~-" 0 ) .  T h e r e -  
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fore, the basis vectors of the direct lattice are 

a 1 : a - Clf ld  1 - ~ 2 d 2  - ~ 3 d 3 ,  a 4 - -  d l ,  

a 2 = b - ~ [~ ld l  - ] ~ 2 d 2  - [ ~ 3 d 3 ,  a 5 -~- d 2, 

a 3 ~ c~ a 6 = d 3 .  

Vector a3 is the only one that does not depend on the 
modulation vectors d/; consequently, the correspond- 
ing TIPSO can be regarded as the commutative 
product of two PSOs: 

(i) the first one maps each element of the set 
(al, a2, a4, as, a6) onto itself or onto its opposite and 
leaves a 3 unchanged; 

(ii) the second one acts on a3; therefore, it maps 
a3 onto a3 or onto its opposite and leaves the set 
(al ,  a2, a4, as, a6) unchanged. 

With respect to the basis (al, a2, a4, as, a6, a3), the 
matrices of these PSOs are 

el 0 0 0 0 0" 

0 el 0 0 0 0 

0 0 el 0 0 0 

0 0 0 el 0 0 

0 0 0 0 el 0 

0 0 0 0 0 1 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 e 

"el 0 0 0 

0 el 0 0 

0 0 el 0 

0 0 0 el 

0 0 0 0 

0 0 0 0 

0 01 

0 0 

0 0 

0 0 ' 

el 0 

0 ez 

where ei equals +1 or - 1 ;  el and e2 are 
independent. 

The types of these PSOs are 1 or identity, 15 or 
total homothetie of ratio ( - 1 )  in the hyperplane 
(al, a2, a4, as, a6), m (reflection through the same 
hyperplane), 16 or total homothetie of ratio ( - 1 )  in 
space E 6. 

(2) Kind 21 corresponds to 

q* = a la* ,  q* = a2a*, q* = ~3 b*, 

i.e. three irrational entries. The basis vectors of the 
direct lattice are 

al = a - ffldl -- a2d2, a4 = dl, 

a2 = b -/33d3, a5 = d2, 

a3 = c, a6 = d3. 

a 3 is the only vector that does not depend on the 
modulation vectors di. a2 depends on the modulation 
vector d3 whereas al depends on dl and d2. There- 
fore, with respect to the basis (al, a4, as, a2, a6, a3), 
the matrix of the corresponding TIPSO is 

"el 0 0 0 0 

0 el 0 0 0 

0 0 el 0 0 

0 0 0 e2 0 0 

0 0 0 0 e2 0 

0 0 0 0 0 e3 

m 

0 

0 

where, as previously, e; equals + 1 or - 1  and el, e2 
and e3 are independent. The different types of TIPSO 
corresponding to this kind are" 

1, 13, ~4, 1~, 16, 2, m. 

We recall that the PSO denoted 2 is the simple 
rotation through the an__gle ~- in the plane defined by 
the vectors a2 and a6; 13 is generally written 1. 

(3) Finally, we study kind 22, which corresponds 
to 

q ~ = a l a * ,  q ~ = a 2 a * ,  q ~ = a 3 a * .  

The basis vectors of the direct lattice are 

a l = a - a l d l - a 2 d 2 - a 3 d 3 ,  a4=d l ,  

a2 = b, a5 = d2, 

a3 = c, 8 6  = d6. 

As vectors a2 and a3 do not depend on the modu- 
lation vectors, a TIPSO can act without restriction 
on a2 and a3. With respect to the basis (al, a4, as, a6, 
a2, a3), the matrices of the corresponding PSOs are of 
the form 

e 0 0 0 

0 e 0 0 

0 0 e 0 

0 0 0 e 

0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

M2 

where M2 is the matrix of a general PSO of space E 2. 
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Table 2. The nine types of TIPSO 

The number  of  different types is in the first column,  the matrix in 
the second one, the type o f  the corresponding PSO is in the third 
one and the corresponding kinds previously found are in the last 
column. 

No.  Matrices PSOs Previous numbers  

I el I, T6 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 
14, 15, 16 

II A { ml' 15, 16 8,11,17, 18 
-- -- 

I, 14, 16 13", 20 III B 2 

IV D 1, 13, 16 19 
1, 13, 14, 15, 16 21 

V E 2, m 

1, 14, 16 23 a VI G 2 

l, 14, 15, 16 
VII F 2, 3, 4, 6 22 

m 
143, 144, 146 
l, 14, l0 

VIII C 2 33, 44, 66 13b' 23b 
332, 442, 662 
l ,  14, 16 
2 IX H 23 ~ 33, 44, 66 
332, 442, 662 

'Fable 3. The four general types of TIPSO 

The first column gives the name of  the type, i.e. a, b, c or d, the 
second one, the corresponding matrices, the third one the W P V  
symbols  and the last one the previous numbering.  

Type  Matrices 

a F 

b E 

c H 

d G 

PSOs Previous numbers  

1 I, III, v i i  
2 , 3 , 4 , 6  
m 
14, ls, 16 
143, 144, 146 
1 II, IV, V 
m, 2, 1, 14, 15, 16 
1 VIII, IX 
2, 14, 16 
33, 44, 66 
332, 442, 662 
1 VI 
2, 14, 16 

As a result, the types of the corresponding TIPSOs 
are 

1, 14, m, 2, 3, 4, 6, 

T~5, 16, 143, 144, 146. 

We explain some of these symbols of point-symmetry 
operationsof space E6:  

(i) PSO 143, is the product of the total homothetie 
of ratio ( - 1 )  in the four-dimensional space (aj, a4, 
as, a6)  and of the simple rotation 3 through the angle 
2w/3 or 47r/3 in the plane (a2, a3). 

(ii) PSOs 144 and 146 are similarly defined. 
These symbols (WPV symbols) are explained by 

Weigel, Phan & Veysseyre (1987). 

Table 4. The irrational entries of the vectors corre- 
sponding to each of the four types of TIPSO 

T y p e  
d 
C 

q* (a,  fl, 3',) q* (or2 f12 3'2) q* (or3 f13 Y3) 
(a~ 0 O) (0 B2 O) (0 0 y3) 
(I, k O) (k k O) (0 0 ~,,) 
(k 0 O) (0 k O) (0 0 )'3) 
(k 0 O) (0 k O) (0 0 k) 

(a, /3, o) (42 /3~ o) (a, /33 o) 
(a,/3, O) (42/32 0) (430 O) 
(a l /31  O) (a2 0 O) (a' 3 0 O) 
(a~/3, O) (a20 O) (0/33 O) 
(~, #, o) (o o ~,~) (o o ~,3) 
(a, o o) (420 o) (o/33 o) 

All the other possibilities 

Table 5. The 19 types of TIPSO 

A m o n g  the 78 types o f  crystallographic PSOs o f  space E 6, only 19 
types are TIPSOs  

1 
m 
2 , 3 , 4 , 6  
1, 14, 15, 16 
33, 44, 66 
332, 442, 662 
143, 144, 146 

Table 6. The 57 tri-incommensurate PSGs 

The first co lumn gives the W P V  symbol  o f  the group,  the second 
one the types o f  the PSOs that generate the groups and the last 
one the number  o f  PSGs  belonging to the corresponding type. The 
underlined symbols  are the holohedries o f  TI crystal families. The 
last two lines o f  type c are abridged symbols  o f  the 'monoclinic di 
cubic'  family. Its cell includes two equal cubes belonging to two 
nonor thogonal  spaces. This was used for describing a TI cubic 
wfistite (Weigel, Veysseyre & Carel, 1987). For  instance, as we will 
explain in a next paper,  the whole symbol  of  the holohedry  is 44/2, 
662, 1~/2 and We abridge it into 2, 662, 2 as m, 3, m is the 
abbreviat ion of  4/m, -3, 2/m. 

PSGs 

1; 16; 14; 2; 14 _L 2 

1_2;m; 15_L m 

m _L m; 14 .1. m; 2, 15, 15; 14 _1_ m _1_ m; 

4; 144; 14 .1. 4; 4 rn m; 144 m; 

4, 1515; 14-1- 4 m m ;  

3; 6; 3,m; 6 m m; 14 / 3; 14 _L 6; 

14 _L 3 m; 146; 3,15; 6,15,15;14 6,15,m; 14 _L 6 m m 

1;1 _l_l; 

T ± 2; T _L m; 2 J. m; T ± 2 .L m 

44*; 44* _L 2; 

33*; 66*; 33* .1. 2; 66* .L 2; 

2, 44*; 2, 44", 2 .L 2; 

2, 66*, 2; 33*, 2; 33*, 2 _L 2; 2, 66", 2 _L 2 

14, 33; 14,662; 44, 33, 14; 

442, 33, 2; 2, 662, 2 

2 _L 2; 14, 14; 2 _L 2 _L 2 

Types o f  N u m b e r  
PSO of  PSGs  

a , b , c , d  5 

a,b 3 

a 23 

b 6 

c 17 

d 3 

All 23 kinds have been studied in the same way. 
Several kinds can be put together in one type and, at 
a first stage, the result is the nine types of TIPSO 
listed in Table 2. 
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Table 7. Tri-incommensurate crystal families of space E 6 

The  names o f  the TI  crystal families are given in the first column, the WPV symbols o f  their holohedries are to be found in the second 
co lumn and the order  o f  these holohedries in the third one. The  subgroups o f  each ho lohedry  are listed in the four th  column and their 
order  in the fifth one. In the last co lumn are the numbers  o f  T IPSGs  belonging to each TI  crystal family. The  57 PSGs are classified 
family by family. 

WPV symbols o f  N u m b e r  o f  
Name  o f  the family the ho lohedry  Order  WPV symbols o f  the T IPSGs  Order  T IPSGs  

15-Clinic 1~ 2 1 1 2 
Decaclinic-al 1~ .1_ rn 4 1~; m 2 3 
Hexaclinic oblic 14 .L 2 4 14; 2 2 3 
Di-Triclinic T _L T 4 T 2 2 
Hexaclinic rectangle 14.1. m .1. m 8 1~.1_ m; m _1. m; 2, 15, 15 4 4 
Hexaclinic square 14.1. 4 m m 16 4; 144 4 

14 _L 4; 4 m m; 4, 15, 15; 144, 15, m 8 7 

Hexaclinic hexagon 1"-] _L 6 m m 24 3; 6; ~6;__3 m; 3 1~ 6 12 
[14 _L 3 m; 14 _L 6; 6 m m; 6, 15, 15; 146, 15, m 12 

Triclinic oblic-al T _1. 2 .1_ m 8 T I 2; T .1_ m; 2 _L m 4 4 
Tri oblic 2 .1_ 2 .1. 2 8 2 .L 2; 14, 14, 1+ 4 3 
Diclinic di square oblic 44* .L 2 8 44* 4 2 
Diclinic di hexagon oblic 66* _L 2 12 33* 3 

66*; 33* .1_ 2 6 4 
Monoclinic di square oblic 2, 44* .1. 2 16 2, 44*, 2 8 2 
Monoclinic di hexagon oblic 2, 66", 2 .L 2 24 33*, 2 6 

2,66", 2; 33*, 2 _¿. 2 12 4 
Monoclinic di cubic 2, 662, 2 48 1+, 33 12 

2, 33; 44, 33, 1+; 442, 33, 2 24 5 

Table 8. Separation of physical and additional space 

In this table, we separate physical space and addit ional  space. F o r  each TI  crystal family, columns 1, 2 and 3, respectively, give the basis 
(in space E6), the name o f  the family and the WPV symbol o f  the holohedry;  then, the following two columns give the name and symbol 
o f  the physical par t  o f  the TI crystal family; the last co lumn gives the symbol o f  the addit ional  par t  o f  the TI  crystal family according to 
the nomencla ture  o f  Janner  et  al. (1983). 

E 6 Physical space E 3 

Bases Families Holohedr ies  Families Holohedr ies  Addit ional  space 

(x, y, z, t, u, v) 15-clinic 16 Triclinic T T 
(x, y, t, u, v, z) Decaclinic-al 1-~ _1. m Monoclinic 2/m T 1 
(x, y, t, u, z, v) Hexaclinic oblic 14 _L 2 Monoclinic 2/m 2/m 
(x, y, t, z, u, v) Di triclinic T _L T Monoclinic 2/m m/2 
(x, t, u, y, v, z) Triclinic oblic-al T .1. 2 _¿. m Orthorhombic mmm T 2 m 
(x, t, y, u, z, v) Tri oblic 2 .1. 2 .1. 2 Orthorhombic mmm rnmm 
(x, t, u, v, y, z) Hexaclinic oblic l'j .1. 2 Monoclinic 2/m 1 T 

Hexaclinic-rectangle 1"-~ _1_ m _1_ m Orthorhombic mmm T 1 1 
Hexaclinic square 1-'] _L 4mm Tetragonal 4/mmm 1 T 1 1 

Hexaclinic-hexagon 1~ .1. 6mm Hexagonal 6/mmm I T 1 1 
(x, y, t, u, z, v) Diclinic di square oblic 44* _L 2 Tetragonal 4/m 4/m 

Diclinic di hexagon oblic 66* .L 2 Hexagonal 6/m 6/m 
3* _L 2 Hexagonal 6 6 

Monoclinic-di square oblic 44*, 2 _L 2 Tetragonal 4/mmm 4/mmm 
Monoclinic-di hexagon oblic 66*, 2 .1. 2 Hexagonal 6/mmm 6/mmm 

(x, y, z, t, u, v) Monoclinic di cubic 2,662,2 Cubic m 3 m m 3 m 

However, it is possible to put together these nine 
types in only four general kinds, numbered a, b, e 
and d, which are listed in Table 3, the values of the 
irrational entries being given in Table 4. 

In conclusion, among the 78 types of crystallo- 
graphic PSOs of space E 6 (Veysseyre, Veysseyre 
& Weigel, 1990), only 19 types of TIPSO appear 
(Table 5). 

In Tables 3, 4, and 5, we use WPV symbols for 
PSOs of space E 4 o r  E 6. For instance, we recall that 
33 is the symbol of a PSO in space E 4 :  a double 
rotation through the angle 2zr/3 in a plane and 
through the angle 2zr/3 in the orthogonal plane. 
Similarly, 662 is the symbol of PSO in space E 6" a 

triple rotation in three planes orthogonal two by two 
and through the angles 2rr/6, 2rr/6 and 2~-/2, respec- 
tively. 

II. Tri-incommensurate point-symmetry groups of E 6 

(1) A point-symmetry group of E 6 is considered 
tri-incommensurate if it is composed of PSOs 
belonging to only one type of TIPSO listed in 
Table 2. 

For instance, let us consider the group 1 _L 2 _L m. 
This is a group of order 8, holohedry of the crystal 
family of space E 6, called 'triclinic oblic-al'. The cell 
of this family is a right hyperprism whose basis is the 
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rectangular product of the triclinic cell, in a space E 3, 
and of the parallelogram (oblic) cell in the space E 2 
orthogonal to the space E 3. We suggest the abbre- 
viation 'al' for the long expression 'right hyperprism 
based on ...' and the name 'oblic' instead of paral- 
lelogram. So 'oblic-al' means right prism based on a 
parallelogram; it is generally called 'monoclinic'. 
Moreover, the names 'orthogonal or rectangular 
product'  are omitted. Some examples will be given in 
paper XIV. 

With respect to the basis (a~, a4, as, a2, a6, a3) or 
(x, t, u, y, v, z), the eight PSOs of this group are 

1, ix,., 2y~, m~, Txytuv, l xzt,, Ty~, T6. 

All these PSOs are of kind 21, i.e. type V. Therefore, 
the point group 1 _L 2 .L m is a TIPSG. 

(2) The 57 different TIPSGs of space E 6, generated 
by all the TIPSOs of this space, are listed in Table 6. 
Thus, we can notice that: 

five PSGs belong to the four types; 
three PSGs belong to types a and b; 
23 PSGs belong to type a; 
six PSGs belong to type b; 
17 PSGs belong to type c; 
three PSGs belong to type d. 

III. Tri-incommensurate crystal families of  E 6 

A crystal family of space g 6 is a tri-incommensurate 
crystal family  if and only if it is composed of 
TIPSGs. 

Owing to our geometrical method of constructing 
the crystal families of an n-dimensional space 
(Veysseyre, Weigel & Phan, 1993) and owing to the 
list of TIPSOs of space E 6 (see Table 6), we easily 
obtain the TI crystal families of this space. They are 
listed in Table 7. The result is the existence of 14 TI 
crystal families. 

This method enables us to find all TI crystal 
families of space E 6 as well as the TI PSGs, i.e. the 
holohedries of these families and their subgroups. 
These subgroups will be studied in the second part of 
this series. 

Moreover, it is possible to separate the physical 
structure from the additional incommensurate 
dimensions. The method is explained through the 
following three examples: 

(1) The first example is that of the '15-clinic 
family'; its holohedry is the group 16 of order 2. In 
space E 6, the two PSOs of this group are 

(i) the identity 
(ii) the total homothetie of ratio ( - 1 )  and of 

dimension 6; this PSO is Txyztuv. 
In physical space E 3, the corresponding PSOs are 

1 (identity) and T~yz, which generate a group of order 
2, i.e. the holohedry of the 'triclinic family'. 

Table 9. Incommensurate PSOs  
The first column gives the list of the MIPSOs, the second the list 
of the DIPSOs, and the third the TIPSOs. The symbols of these 
PSOs are the Hermann-Mauguin symbols (1, m, 2, 3, 4, 6 . . . .  ) 
or the WPV symbols (23, 233 . . . .  ). For instance, 12 = 2 matrix: 

1 0 ) ,  
- 0  - 1  

133 = 1~6 = 6; 13--4 = 1~4 = 4; 1~6 = 1S3 = ~, 
m 3 3 = 1 5 6 6 = 6 6 .  
The last line gives the number of incommensurate PSOs of each 
type. 

Sum 

MIPSOs DIPSOs TIPSOs 
(four-dimensional) (five-dimensional) (six-dimensional) 

1 1 1 
1; 14 1; 14; 15 1; 14; 15; 16 
m m m 
2; 3; 4; 6 2; 3; 4; 6 2; 3; 4; 6 
23; 24; 26 3; 4; 6 14 3; 14 4; 14 6 

33; 44; 66 33; 44; 66 
33; 44; 66 233; 244; 266 

11 18 19 

In additional space E 3, the two PSOs are 1 and 
l tuv. Therefore, we can conclude that the holohedry 
T 6 in space E 6 corresponds to the holohedry ]- (tri- 
clinic family) in space E 3 and to T in the additional 
space E 3. 

(2) The second example is that of the 'decaclinic-al 
family'. In space E 6, its holohedry is the group 
15 _L m of order 4. With respect to the basis (al, a2, 
a4, as,  a6, a3), the PSOs are 

1, m~, T.,cyt.v, 16. 

They correspond to type a or b (kind 2). 
Therefore, in space E 3, the corresponding PSOs 

are 2x e, m~, 1 and 1. They generate the PSG 2/m, 
which is the holohedry of the monoclinic family. In 
additional space E 3, the symbol of the additional 
PSOs is 1, 1, according to the nomenclature of 
Janner, Janssen & de Wolff (1983). As previously, we 
can conclude that the holohedry 15 _L m in space E 6 
corresponds to the holohedry 2/m in physical space 
E 3 and T, 1 in additional space E 3. 

(3) The last example is that of 'hexaclinic oblic 
family'. The symbol of the holohedry is T 4 _L 2; this 
group is of order 4. The PSOs are 1, 2, 14, 16. They 
belong to types a, b, c, d or more exactly to kind 3. 
With respect of the basis (a~, a2, an, a5, a3, a6), the 
PSOs are 

space E 6 1, ]-xy,,, 2zv, ]-6, 

physical space E 3 1, 2xy  , m z ,  Txyz, 

additional space E 3 1, 2tu , my, Ttuv. 

Therefore, we can write that the TIPSG 14 _L 2 in 
space E 6 corresponds to the group 2/m in the physi- 
cal space E 3 and to the group 2/m in the additional 
space E 3. 
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All the different TIPSGs (holohedries of the TI 
crystal families) have been studied with the same 
method and the results are listed in Table 8. There- 
fore, it is possible to establish a correspondance 
between our approach for defining the TI crystal 
families and their holohedries (see the left side of 
Table 8) in space E 6 and the approach of Janner et 
al. (1983) (see the right side of Table 8). 

Concluding remarks 
As a conclusion of this first paper concerning the TI 
crystals structures, we compare and list the numbers 
and types of PSOs that describe the mono-, di- or 
tri-incommensurate structures (Table 9). In the next 
paper, we compare the MI, DI and TI PSGs and 
crystal families; we explain all the symbols of the 
PSGs given in Table 6. 
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Abstract 
The previous paper in this series [Phan & Veysseyre 
(1994). Acta Cryst. A50, 438-444] mainly compared 
the mono-, di- and tri-incommensurate point- 
symmetry operations, their number and their sym- 
bols. In this paper, the filiation from the gZ- 
irreducible crystal families of the one-, two- and 
three-dimensional spaces to the mono-, di- and tri- 
incommensurate families of the four-, five- and six- 
dimensional spaces is established. The holohedries 
and the different point groups of these crystal fami- 
lies are compared. The paper begins with a list of the 
incommensurate families; then a series of nine 
further tables establishes the connection between the 
different families and their point groups. It is proved 
that there are 30 mono-incommensurate (MI) point 
groups, 47 di-incommensurate (DI) point groups and 
57 tri-incommensurate (TI) point groups belonging 
to the six MI crystal families of four-dimensional 
space, to the 11 DI crystal families of five- 
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dimensional space and to the 14 TI crystal families of 
the six-dimensional space. 

Introduction 
In previous papers, we have studied the mono- 
incommensurate (MI) crystal families (Veysseyre & 
Weigel, 1989), the di-incommensurate (DI) crystal 
families (Phan, Veysseyre & Weigel, 1991), the tri- 
incommensurate (TI) crystal families (Phan & Veyss- 
eyre, 1994) and the incommensurate point operations 
- mainly their number and their symbols. We recall 
that the mono-, di- and tri-incommensurate phases 
of physical space are not crystals in this space. 
However, they can be considered as sections of crys- 
tals of four-, five- or six-dimensional spaces through 
physical space. Therefore, in this paper, we call a MI 
family a crystal family in the four-dimensional (4D) 
space, a DI family a crystal family in five- 
dimensional (5D) space and a TI family a crystal 
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